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Abstract

In this paper, a multisensor fusion fault-tolerant control system with fault detection and identification via set separation
is presented. The fault detection and identification unit verifies that for each sensors-estimator combination, the estimation
tracking errors lie inside pre-computed sets and discards faulty sensors when their associated estimation tracking errors leave
the sets. An active fault tolerant controller is obtained, where the remaining healthy estimates are combined using a technique
based on the optimal fusion criterion in the linear minimum-variance sense. The fused estimates are then used to implement
a state feedback tracking controller. We ensure closed-loop stability and performance under the occurrence of abrupt sensor
faults. Experimental validation, illustrating the multisensor fusion fault tolerant control strategy is included.
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1 INTRODUCTION

Multisensor strategies are a topic of current interest in
the research community in order to improve systems re-
liability. Sensor fusion is one of the most used techniques
for integrating data provided by various sensors, in or-
der to obtain the best possible estimate [1]–[2]. However,
less attention has been focused on the case when sen-
sors are used in a feedback control system. As is the case
for all automatic control system components, and sen-
sors in particular, faults can deteriorate the performance
and even jeopardize the stability of the whole system.
Therefore, it is important to consider the fault tolerance
capabilities of a control system at the design stage.

In this paper, we present an active fault tolerant control
scheme consisting of multiple sensors-estimator combi-
nations, a fault detection and identification (FDI) unit,
an estimate fusion mechanism with reconfiguration ca-
pabilities and a state feedback controller with reference
tracking. The FDI unit is based on invariant set com-
putation (see, e.g., [3], [4]). The unit tests that for each
sensors-estimator combination, the estimation tracking
errors lie inside pre-computed “healthy” sets and dis-
cards faulty sensors when their associated estimation
tracking errors leave the healthy sets to converge towards
“under-fault” sets. The proposed technique is suitable
for reference tracking problems, especially when the ref-
erence signal contains an offset component, since the lat-
ter makes possible the separation between healthy and
under-fault sets. In the reconfiguration stage, the esti-

mates deemed “healthy” by means of the FDI test are
fused based on the optimal fusion steady-state Kalman
filter proposed in [1]. The choice of this fusion filter
rather than any other decentralised fusion method is
motivated by the reduction of on-line computation re-
quirements. Indeed, decentralised fusion time-varying
Kalman filter algorithms [5], [6] yield large on-line com-
putational burden resulting from on-line computation
of Riccati equations, Kalman filter gains, and weight-
ing matrices or covariances. In the case of the optimal
fusion steady-state Kalman filter, on the other hand,
gains and covariance matrices are constant and can be
pre-computed off line. The optimal fusion steady-state
Kalman filter is composed of two layers where the first
layer has a netted parallel structure to determine the
steady-state cross-covariance between any two faultless
groups of sensors. Estimates and covariances of all lo-
cal subsystems, and the cross-covariances among the lo-
cal subsystems from the first fusion layer are fused in
the second fusion layer to determine the optimal steady-
state matrix weights required to obtain the optimal fu-
sion steady-state estimate. Since the steady-state co-
variances, cross-covariance matrices and weights can be
computed off-line for each healthy configuration con-
sidered, the on-line reconfiguration task simply consists
of selecting the suitable optimal steady-state weighting
matrix that corresponds to the healthy groups of sen-
sors diagnosed by the FDI unit. Finally, the optimal
fused estimate is used to implement a state feedback
controller with integral action that achieves reference
tracking. Proofs of fault tolerance and stability of the re-
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sulting closed-loop system are given under a set of con-
ditions on the system parameters, such as disturbance
bounds, reference signal offset and bounds, etc. Thus,
the main contribution of this paper is twofold. Firstly, it
provides an integrated strategy for fault tolerant control
by adapting estimate fusion techniques and set-based
FDI to work in combined form. Secondly, it endows the
resulting combined scheme with guaranteed closed-loop
stability properties under severe faults in the system
sensor configuration. The multisensor fault tolerant con-
trol strategy developed in the present paper provides an
alternative to a scheme previously reported by the au-
thors in [7] and illustrated experimentally in [8], which
relied on estimate switching. Compared with [7] and [8],
the present approach has the advantage that estimate
fusion (especially if designed according to an optimisa-
tion criterion) is generally considered to provide better
and smoother estimates than estimate switching. Pre-
liminary conference versions of some parts of this paper
have been reported in [9], [10].

2 Multisensor fusion scheme

2.1 Plant and measurement system

Consider the linear time-invariant discrete-time plant

x(t+ 1) = Ax(t) +Bu(t) + Ew(t) (1)

whereA,B andE are constant matrices with compatible
dimensions, x(t) ∈ Rn is the system state, u(t) ∈ Rm is
the control input andw(t) ∈ Rr is a process disturbance,
which is componentwise bounded as 1

|w(t)| ≤ w, for all t ≥ 0 (2)

for some known constant nonnegative vector w ∈ Rr.
We consider a bank of output equations that combine
several sensor measurements as follows:

yi(t) = Πi(Cix(t) + ηi(t)) + (Ipi
−Πi)η

F
i (t) (3)

for i = 1, . . . , N , where yi(t) ∈ Rpi is the measured
output of the ith group of sensors; ηi, η

F
i ∈ Rpi are

measurement disturbances satisfying the bounds

|ηi(t)| ≤ ηi, |ηFi (t)| ≤ ηFi , for all t ≥ 0 (4)

where ηi ∈ Rpi and ηFi ∈ Rpi , for i = 1, . . . , N , are
known constant nonnegative vectors; and Ipi

is the pi×pi
identity matrix. The fault matrix Πi ∈ Rpi×pi in (3)
characterises the sensor fault situation, and is described

1 In the sequel, inequalities and absolute values are consid-
ered componentwise.

as follows:

Πi =

{
Ipi

if all sensors are healthy

diag {πi1, . . . , πipi
} otherwise

(5)

where πij ∈ [0, 1], for j = 1, . . . , pi. Notice in (3) that
πij < 1 indicates that the jth sensor of the ith sen-
sor group has lost effectiveness, and that πij = 0 cor-
responds to outage of the sensor. The pairs (A,Ci) are
assumed observable.

2.2 Optimal fusion steady-state Kalman estimator

In accordance with the previous measurement equations,
we consider a bank of N steady-state Kalman estima-
tors, where each estimator is associated with one group
of sensors and is designed in order to estimate the states
of the system (1). To obtain the Kalman estimators we
assume, temporarily and only for design purposes, that
the process disturbance w(t) in (1) is a zero-mean Gaus-
sian white-noise with covariance Q, and that the mea-
surement disturbances ηi in (3) are zero-mean Gaussian
white-noises with covariances Ri, for i = 1, . . . , N , un-
correlated from the process noise w(t). (For the remain-
der of the paper, in connection with the FTC capabili-
ties of the scheme, we will remove this assumption and
only assume (2) and (4), with any stochastic description
of the disturbances being possible but whose knowledge
is not required.)

The steady-state estimators are then described by the
following equations [1], [2]:

x̂i(t+ 1|t) = Ax̂i(t|t) +Bu(t) (6)

x̂i(t|t) = x̂i(t|t− 1) +Mi[yi(t)− Cix̂i(t|t− 1)] (7)

where Mi = PiC
T
i (CiPiC

T
i + Ri)

−1 is the opti-
mal steady-state innovation gain, Pi = A[Pi −
PiC

T
i (CiPiC

T
i +Ri)

−1CiPi]A
T +EQET is the steady-

state prediction error variance matrix, Pii = Pi −
PiC

T
i (CiPiC

T
i + Ri)

−1CiPi is the steady-state es-
timation error variance matrix, and Pij = [I −
MiCi][APijA

T + EQET ][I − MjCj ]
T is the steady-

state error cross-covariance between the ith and jth
estimators.

The following result reported in [2] provides the opti-
mal information fusion criterion in the linear minimum-
variance sense.

Lemma 2.1 (Optimal steady-state fusion estimate,
Theorem 1 in [2]). Let x̂i(t|t), i = 1, 2, . . . , `, be unbi-
ased estimators of an n-dimensional vector x(t). Let the
estimation errors be

x̃i(t|t) , x(t)− x̂i(t|t) (8)
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Assume that x̃i(t|t) and x̃j(t|t), (i 6= j) are correlated,
and let the covariance (Pii) and cross-covariance matri-
ces (Pij) be given by the expressions provided above, fol-
lowing equation (7). Then the optimal linear minimum-
variance information fusion estimator is given by

x̂fus(t) = λ1x̂1(t|t) + λ2x̂2(t|t) + . . .+ λ`x̂`(t|t) (9)

where the optimal matrix weights λi, i = 1, 2, . . . , `, are
computed from

λ = Σ−1e(eT Σ−1e)−1 (10)

where λ = [λT1 . . . λT` ]T and e = [In . . . In]T are both
n`× n matrices, and Σ = (Pij)i,j=1,2,...,`, is an n`× n`
matrix. ◦

Every estimator (6)–(7) independently estimates the
states of system (1) and gives the unbiased state esti-
mate x̂i(t|t) to be used in the fusion estimate (9). Only
“healthy” estimates, as diagnosed by an FDI mechanism
(described in Section 3 below), are fused. That is, for
the configuration of groups of sensors deemed healthy
by the FDI unit, the appropriate cross-covariance ma-
trix is selected in the first fusion layer and the suitable
optimal steady-state matrix weights are chosen in the
second fusion layer in order to obtain the optimal fusion
estimate.

Thus, the fusion estimate (9) is computed over only
healthy groups of sensors, that is, groups whose indices
are in the set

H , {i ∈ {1, . . . , N} : sensor group i is healthy} (11)

yielding

x̂fus(t) =
∑
i∈H

λix̂i(t|t) (12)

The optimal weights λi, i ∈ H, are recomputed accord-
ingly by taking, e.g., in (10), only subindices belonging
to H.

2.3 Prediction and estimation errors

We define the prediction errors as

x̃i(t|t− 1) , x(t)− x̂i(t|t− 1) (13)

Provided the ith group of sensors is healthy (i.e., Πi =
Ipi

), the associated prediction error (13) satisfies, us-
ing (1), (3) [with Πi = Ipi ], (6) and (7)

x̃i(t+1|t) = (A−AMiCi)x̃i(t|t−1)+
[
E −AMi

] [w(t)

ηi(t)

]
(14)

Note that, due to observability of the pair (A,Ci), for
i = 1, . . . , N , the matrices

AMi
, A−AMiCi (15)

are Schur 2 matrices. Hence, the prediction errors x̃i as-
sociated to healthy groups of sensors are bounded when-
ever w and ηi are bounded. Moreover, using the proce-
dures in [3], [4], we can obtain invariant sets, denoted as
Ξi, and ultimate bounds for the prediction errors of the
form

|x̃i(t|t− 1)| ≤ x̃i (16)

where Ξi and x̃i are computed from equation (14) and
the bounds (2) and (4) on the disturbance signals.

Note from (3) [with Πi = Ipi ], (7), (8) and (13) that the
estimation errors satisfy

x̃i(t|t) = (In −MiCi)x̃i(t|t− 1)−Miηi(t) (17)

Using the bounds (4) and (16), we can find ultimate
bounds for x̃i(t|t) in (17) as:

|x̃i(t|t)| ≤ x̃i
′
, |In −MiCi|x̃i + |Mi|ηi (18)

2.4 Feedback tracking control

The control objective is to track a reference signal xref
that satisfies the following dynamics:

xref (t+ 1) = Axref (t) +Buref (t) (19)

We consider that the reference signals are bounded ac-
cording to the following assumption.

Assumption 2.2 The input reference uref (t) and the
state reference xref (t) are bounded signals. In particular,
constant vectors xref,0 ∈ Rn and x̄ref ∈ Rn are known
such that, for all discrete time instants t ≥ 0, xref (t) ∈
Xref , {x ∈ Rn : |x− xref,0| ≤ x̄ref}. ◦

To achieve the reference tracking goal, we will employ a
feedback tracking controller with integral action. Let us
denote by σ ∈ Rq the integral action state, defined by

σ(t+ 1) = σ(t) + Ts(C
∗xref (t)− y∗(t)) (20)

where Ts is a scalar constant (typically taken as the
sampling period when (1) is the discretisation of a
continuous-time system) and y∗(t) = C∗x(t) + η∗(t),
with y∗(t) ∈ Rq, η∗ ∈ Rq, and |η∗(t)| ≤ η̄∗, is a system
measured output not affected by faults (typically, mea-
surements that the system cannot afford to lose without
affecting detectability).

2 A Schur matrix is a square matrix with real entries and
with eigenvalues of magnitude less than one.
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Remark 2.3 Notice that, since x̂fus obtained from
(11)–(12) is computed over only healthy groups of sen-
sors, a valid alternative would be to define the integral
action as σ(t + 1) = σ(t) + TsC(xref (t) − x̂fus(t))
where C is a matrix defining a “performance” output of
particular interest. ◦

We define the plant tracking error, z(t), the integrator-
augmented plant tracking error, ξ(t), the prediction

tracking errors, ξ̂i(t|t − 1), and the estimation tracking

errors, ξ̂i(t|t), for i = 1, . . . , N , as

z(t) = x(t)− xref (t) (21)

ξ(t) =

[
z(t)

σ(t)

]
(22)

ξ̂i(t|t− 1) = x̂i(t|t− 1)− xref (t) (23)

ξ̂i(t|t) = x̂i(t|t)− xref (t) (24)

Note from (1), (19)–(22) that we can express the dynam-
ics of the augmented system as:

ξ(t+ 1) =

[
A 0

−TsC∗ Iq

]
ξ(t) +

[
B

0

]
(u(t)− uref (t))

+

[
E 0

0 −Ts

][
w(t)

η∗(t)

]
(25)

Note from (7) that the prediction and estimation track-
ing errors are related as

ξ̂i(t|t) = ξ̂i(t|t− 1) +Mi[yi(t)− Cix̂i(t|t− 1)] (26)

Also, using (12), the optimal fusion estimate tracking
error is defined as

ξ̂fus(t) , x̂fus(t)− xref (t) (27)

Using (8), (12), (21) and the fact that, from (10) (or
the corresponding equation with subindices belonging to
H),

∑
i∈H λi = eTλ = In, the optimal fusion estimate

tracking error (27) satisfies

ξ̂fus(t) =
∑
i∈H

λix̂i(t|t)−
∑
i∈H

λixref (t) (28)

=
∑
i∈H

λi(z(t)− x̃i(t|t)) = z(t)−
∑
i∈H

λix̃i(t|t)

The variable ξ̂fus(t) is then applied in a state feedback
tracking controller, as follows,

u(t) = −K1ξ̂fus(t)−K2σ(t) + uref (t)

= −Kξ(t) +K1

∑
i∈H

λix̃i(t|t) + uref (t) (29)

where K =
[
K1 K2

]
is a stabilising gain obtained via

a suitable state feedback design technique (e.g. LQR)
for the system (25). To this end, we make the following
standard assumption in reference tracking applications
(see, e.g., [13] for an equivalent condition in terms of the
original system (1) and integral action (20)).

Assumption 2.4 The augmented system (25) is as-

sumed to be stabilisable, and the design of K =
[
K1 K2

]
is assumed to be performed accordingly, such that

Acl =

[
A−BK1 −BK2

−TsC∗ Iq

]
(30)

is a Schur matrix. ◦

This property will be used for the analysis in Section 3.

3 Fault Detection and Identification

In this section we describe the proposed fault detection
and identification principle. The principle is based on the
separation of “healthy” sets, where the estimation track-
ing errors (24) remain under healthy operation, from
“under-fault” sets, towards which the estimation track-
ing errors jump when abrupt sensor faults occur in one
or more groups of sensors. The computation of these
sets, as well as the derivation of conditions to achieve the
aforementioned separation, requires the analysis of the
closed-loop system dynamics under the proposed fusion-
estimate-based feedback controller both for healthy and
under-fault operation. In this analysis, performed in the
following subsections, we will assume that the FDI cor-
rectly identifies the faulty groups of sensors, so that the
fusion estimate (12) is only formed by estimations cor-
responding to healthy groups of sensors. Later, in The-
orem 3.5, we will provide conditions that guarantee the
correct selection of healthy groups of sensors by the FDI,
thus validating the analysis.

In contrast with other schemes, (see, e.g., [11], [12]),
which use stochastic arguments for fault detection and
control reconfiguration, the approach followed here is
very simple computationally since, once the required
conditions are satisfied by design (off-line), the on-line
system complexity only depends on the number of dif-
ferent fault situations considered.

3.1 Closed-loop stability under healthy sensor fusion

We first establish closed-loop stability of the multisensor
fusion scheme described in Section 2 when only healthy
sensors are used to compute the fused estimate (12). By
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using, (25), (29), (30) we obtain

ξ(t+ 1) = Aclξ(t) +

[
BK1

0

]∑
i∈H

λix̃i(t|t)+[
E 0

0 −Ts

][
w(t)

η∗(t)

]
(31)

Therefore, since Acl is a Schur matrix (see Assump-
tion 2.4), and x̃i(k|k) (for healthy groups of sensors,
cf.(18)) and w(k) and η∗(t) are bounded signals, it fol-
lows that the states of the system (31) are also bounded.
Moreover, using the procedures in [3], [4], we can obtain
an ultimate bound for the tracking error ξ(t) of the form

|ξ(t)| ≤ ξ (32)

where ξ is computed from the dynamic equation (31)
and the bounds 3 (2), (18) and η̄∗, on its input signals.

3.2 Prediction and estimation tracking errors associ-
ated with healthy sensors

We develop the dynamics of the prediction tracking er-

rors ξ̂i(t|t − 1) (see (23)), for i ∈ H (cf.(11)), in order
to obtain attractive invariant sets and ultimate bounds
for these variables and for the estimation tracking errors

ξ̂i(t|t) (see (24)) when only healthy sensors are used to
compute the fused estimate (12). By using (3) [with Πi =
Ipi

], (6), (7), (19), (21)–(23), and (29) we obtain

ξ̂i(t+1|t) = AMi
ξ̂i(t|t−1)+Bi1ξ(t)+Bi2

∑`∈Hλ`x̃`(t|t)
ηi(t)


(33)

where AMi
is as in (15) and Bi1= [AMiCi − BK1

−BK2], Bi2 =
[
BK1 AMi

]
. Note that the inputs

to (33), namely,

wi(t) ,

[
ξT (t)

∑
`∈H

(λ`x̃`(t|t))T (ηi)
T (t)

]T
(34)

can be bounded componentwise as |wi(t)| ≤ wi using the
bounds (18), (32), and the bounds on the disturbances.
Then, since the matrices AMi

are Schur, the prediction

tracking error ξ̂i(t|t− 1) is also bounded. Using the pro-
cedure in [3], we can compute the following attractive

3 Note, in particular, that the bound (18) applies, since we
have assumed that only healthy sensors take part in the
fusion estimate. This situation will be later guaranteed by the
FDI Criterion 3.4 and the corresponding analysis in Section
3.3

invariant set for each healthy sensors-estimator combi-
nation in which, in the absence of sensor faults, the tra-
jectories of (33) will remain if started inside or towards
which they will converge if started outside:

Ωi =
{
ξ̂i ∈ Rn :

∣∣∣V −1i ξ̂i

∣∣∣ ≤ ri + εi

}
(35)

where AMi = ViΛiV
−1
i is the Jordan decomposition of

AMi
, ri = (In − |Λi|)−1

∣∣∣V −1i

[
Bi1 Bi2

]∣∣∣wi and εi ∈ Rn

is any vector with (arbitrarily small) positive compo-
nents. The set (35) can be refined by means of the con-
tractive procedure of [4].

Next, substituting (3) (with Πi = Ipi
) in (26), and

using (13), we have that the estimation tracking er-
rors (24), for i ∈ H, satisfy

ξ̂i(t|t) = ξ̂i(t|t− 1) +MiCix̃i(t|t− 1) +Miηi(t) (36)

Thus, ξ̂i(t|t), for i ∈ H, belongs to the set 4

Γi , Ωi ⊕MiCiΞi ⊕MiNi (37)

(where Ni is a bounding box associated with the noise
bounds), whenever the prediction errors (13) belong
to the invariant sets Ξi defined in Section 2.3 and the
prediction tracking errors (23) belong to the invariant
set (35).

3.3 Conditions for fault tolerance

Consider a fault in the jth group of sensors, characterised
by a change of the fault matrix Πj in (3) from the identity
matrix (healthy case, see (5)) to a new “under fault”
value. At the time of the fault, substituting (3) into (26),
and using (13) and (23), we have that the “under fault”

estimation tracking error ξ̂Fj (t|t) satisfies

ξ̂Fj (t|t) = [In +Mj(Πj − Ipj )Cj ]ξ̂j(t|t− 1)

+Mj(Πj − Ipj )Cjxref (t) +MjΠjCj x̃j(t|t− 1)

+Mj [Πjηj(t) + (Ipj −Πj)η
F
j (t)] (38)

Thus, provided the prediction tracking error ξ̂j(t|t− 1)
defined in (23) belongs to the invariant set (35) and
the prediction error (13) belongs to the invariant set Ξj

defined in Section 2.3, then the estimation tracking er-

ror ξ̂Fj (t|t) at the time of the fault belongs to the follow-
ing set

ΓF
j (Πj) , [In +Mj(Πj − Ipj

)Cj ]Ωj

⊕Mj(Πj − Ipj
)CjXref ⊕MjΠjCjΞj

⊕MjΠjNj ⊕Mj(Ipj
−Πj)NF

j (39)

4 The symbol ⊕ denotes the Minkowski sum of sets.
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where Xref is as in Assumption 2.2 and Nj and NF
j are

bounding boxes associated with the noise bounds (4).
Note that expressions (38)–(39) coincide with (36)–(37)
in the healthy case (when Πj = Ipj

).

To ensure that the sets Γi and ΓF
i (Πi) characterise the

estimation tracking errors under healthy operation and
at the time of the fault, respectively, we assume the fol-
lowing.

Assumption 3.1 Before the occurrence of any sensor
fault, the system has been operating under healthy condi-
tion for a sufficiently long time such that all the predic-
tion error trajectories are inside the attractive invariant
sets Ξi defined in Section 2.3 and all prediction track-
ing error trajectories are inside the attractive invariant
sets Ωi defined in (35), for i = 1, . . . , N . Moreover, we
assume that at least one group of sensors (which may
consist of just one sensor) is operational at all times. ◦

In order to ensure an effective fault detection and iden-
tification by the FDI criterion, given later, we need to
verify that the sets Γj and ΓF

j (Πj) are separated.

Assumption 3.2 The condition Γj ∩ΓF
j (Πj) = ∅ holds

for all j = 1, . . . , N , for any of the possible values 5 of
the fault matrix Πj characterising the considered fault
situation for the jth group of sensors. ◦

Note that the sets Γi given by (37) are centred at 0 (this
is so because the sets Ωi given in (35); Ξi defined by
the dynamics (14); and Ni defined as a bounding box
associated with the noise bounds (4), are all centred at
0). The set ΓF

j (Πj) defined in (39), on the other hand,
is offset around a centre point cj(Πj) given by

cj(Πj) = Mj(Πj − Ipj
)Cjxref,0 (40)

where xref,0 is as in Assumption 2.2. Thus, the refer-
ence offset xref,0—which in turn shifts the centre cj(Πj)
in (40)—provides a mechanism to achieve the set separa-
tion condition of Assumption 3.2. Notice from (40) that
the value of the optimal steady-state innovation gainMj

also affects the offset and, hence, is important in achiev-
ing set separation. In addition, Mi influences the size of
the sets through the matrix AMi

in (15) [see, e.g., the
computation of the set Ωi in (35)]. Notice, in particular,
from the Riccati equations defining Mi, that the matrix
gain depends on the values of the noise variances Q and
Ri. Since the approach followed in this paper is mainly
deterministic, the aforementioned matricesQ andRi can
be treated as “design parameters” that can be chosen so
as to aid set separation.

5 Note that, depending on the problem characteristics, more
than one value of the fault matrix Πj can be considered for
the jth group of sensors.

Remark 3.3 Notice that Assumption 3.1 guarantees
that when the fault in the jth sensor group occurs at

some time instant t, x̃j(t|t − 1) is in Ξj and ξ̂j(t|t − 1)
is in Ωj (the invariant sets corresponding to the healthy
operation of the jth sensor). Hence we have from (39)

that, at the time of the fault, ξ̂Fj (t|t) ∈ ΓF
j (Πj). Combin-

ing this condition with Assumption 3.2, we conclude that
the ith group of sensors, for i ∈ {1, . . . , N}, is healthy

at any time t (and thus can be fused) if ξ̂i(t|t) ∈ Γi; and

that the moment ξ̂i(t|t) leaves the set Γi allows us to de-
tect a fault in that sensor group which, in consequence,
must be discarded. ◦

Based on the above developments, the fault diagnosis
criterion proposed for the FDI unit is as follows:

Criterion 3.4 (FDI) At each time step, for each
i = 1, . . . , N : if the estimation tracking error satisfies

ξ̂i(t|t) ∈ Γi then the ith group of sensors is deemed

healthy and considered for fusion in (12); if ξ̂i(t|t) /∈ Γi

then the ith group of sensors is deemed faulty and dis-
carded for all future times. ◦

We then have the following result.

Theorem 3.5 Under the conditions stated in Assump-
tions 2.2, 2.4, 3.1 and 3.2, the system (1) with control
(29) reconfigured by the use of the FDI Criterion 3.4 to
select the index set H in (11) [used to compute the opti-
mal fused estimates (12)], preserves closed-loop stability
whenever a jth group of sensors fails with fault matrix
Πj. Moreover, in the absence of disturbances and mea-
surement noise in the healthy sensors, the integrator-
augmented tracking error ξ(t) defined in (22) converges
asymptotically to zero.

Proof: As explained in Remark 3.3, Assumptions 3.1
and 3.2 guarantee that the FDI Criterion 3.4 only selects
healthy groups of sensors to compute the optimal fused
estimates (12) used in the control law (29). Thus, the
analysis of Sections 3.1 to 3.3 is validated, achieving the
desired boundedness and stability requirements.

Moreover, in the absence of disturbances, w(t) ≡ 0, and
of measurement noise in healthy sensors, ηi(t) ≡ 0 for
i ∈ H (this collection includes the noises affecting the
measured output used in the integral action (20); that is,
η∗(t) ≡ 0), we conclude from (14) and the stability of the
matrix AMi , that the prediction errors x̃i(t|t−1) for i ∈
H converge asymptotically to zero. Equation (17) then
implies that the estimation errors x̃i(t|t) also converge
asymptotically to zero. Then, we have from (31) and
Assumption 2.4 that ξ(t) converges asymptotically to
zero. The results then follows. �

In the following section we illustrate the simplicity and
effectiveness of the proposed fusion fault tolerant control
approach through an experimental example.
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4 Experimental example

The Quanser Magnetic levitation system (MAGLEV)
is a nonlinear electromagnetic suspension system acting
on a solid one-inch-ball. It consists of an electromagnet,
which can lift the ball from a post and sustain it in the air
by counteracting the ball’s weight with the electromag-
netic force (see, e.g., [8], [14] for details). The states of
the system consist of ball position, ball velocity and cur-
rent intensity. The system is linearised around the equi-

librium point xeq =
[
10× 10−3 0 1.2690

]T
and discre-

tised with sampling period Ts = 2ms, yielding a model
of the form (1) with

A =


1.0018 0.0020 0

1.8011 1.0018 −0.0301

0 0 0.9481

 ; B = E =


0

−0.0001

0.0047


The states of the system are measured via 2 “physical”
sensors: a photo-sensitive sensor, S1, which measures the
ball elevation or position, and a current sensing resis-
tor, S3, which provides measurements of the coil cur-
rent. The velocity measurement is obtained via a “soft”
sensor (emulator), S2, that operates by differentiating
the ball position (this component is part of the standard
setup provided by Quanser). We notice that, if the mea-
surements provided by S1 are lost (outage of the sensor),
then the system is no longer observable. However, the
outage of S2 or S3 does not affect observability as long
as sensor S1 remains functional. Thus, the following ma-
trices are considered in the measurement equations (3)

C1 =
[
1 0 0

]
; C2 =

[
1 0 0

0 1 0

]
; C3 =

[
1 0 0

0 0 1

]

The steady-state Kalman estimators parameters (Mi,
Pii, Pij) are computed as explained in Section 2, with

M1 =


0.9999

35.2560

−37.1972

 ,M2 =


0.5674 0.1052

0.1052 0.7453

2.3208 −3.5601

 ,

M3 =


0.1131 −0.0001

3.3924 −0.0180

0 0.2399


The bounds on the process disturbances and measure-
ment noises are taken as: w̄ = 2 × 10−6, η̄1 = 9 ×
10−7, η̄2 = η̄3 = η̄F2 = η̄F3 = 10−7 ×

[
9 5
]T

.

The objective is for the first component of the state,
corresponding to ball position, to track a square-like

wave generated by (19). This results in a reference
for the state vector, xref (t), satisfying the follow-

ing bounds:
[
9× 10−3 −6× 10−3 1.2108

]T
≤ xref ≤[

11× 10−3 6× 10−3 1.3272
]T

. The feedback gain

K = 105 ×
[
−0.4714 −0.0354 0.0203 1.6919

]
is com-

puted as described in Section 2.4 using LQR. We used
Ts = 2ms and sensor S1, that is, C∗ = C1, η∗ = η1, in
the integrator equation (20). (Note that faults in sensor
S1 cannot be considered without losing system’s de-
tectability.) The following fault scenario is considered:
all the sensors start under healthy operation, and an
outage of Sensor S3 occurs at time tF = 111s and re-
mains in this state, so that the fault parameter in (3)

is Π3 =

[
1 0

0 0

]
. Fig. 1 shows the set Γ3 defined in (37)

(top set centred at zero) and ΓF
3 (Π3) defined in (39)

(bottom set centred away from zero). The set separation
condition of Assumption 3.2 is satisfied for Sensor S3,
through its third component. A similar test is carried
out for Sensor S2, and the condition stated in Assump-
tion 3.2 also holds. According to Theorem 3.5, we can
conclude that the scheme preserves closed-loop stabil-
ity whenever sensor S2 or S3 fails. Fig. 1 also shows

the evolution of the estimation tracking error ξ̂3(t|t) at
times, t−F = tF − Ts, tF , and t+F = tF + Ts. At time t−F ,

ξ̂3(t|t) belongs to Γ3. At time tF , it is shifted to the set
ΓF
3 (Π3), making fault diagnosis possible. At the next

sampling time t+F , the corresponding estimation track-
ing error jumps toward a different set (not represented).
Fig. 2 shows the effectiveness of the scheme as the ref-

Fig. 1. Separation of sets representing healthy and faulty
behaviour for MAGLEV’s sensor S3.

erence signal (dash-dotted red line) is tracked by the
ball position (solid blue line) under the fault situation
considered.

7



20 40 60 80 100 120 140 160 1808.5

9.5

10.5

11.5

Time (s)

Ba
ll 

po
si

tio
n 

(m
m

)

tF

Fig. 2. Reference tracking for MAGLEV’s ball position

5 Conclusion

In this paper, a multisensor fusion fault tolerant control
strategy based on set separation to achieve fault detec-
tion and identification (FDI) is proposed. The FDI mod-
ule provides a mechanism where the estimation tracking
error of each sensor is tested for containment in a pre-
computed “healthy” set. If the trajectories for an esti-
mation tracking error jump to a pre-computed “under-
fault” set, which is separated from the “healthy” one, the
sensor is deemed to be faulty and is discarded from the
closed-loop feedback control. The jump from a “healthy”
to an “under-fault” set is guaranteed for all faults con-
sidered through a detailed analysis of the dynamics in-
volved. Thus, only healthy sensor estimates are fused in a
two-layer fusion scheme in order to obtain the optimal fu-
sion estimate used by the controller. We have given con-
ditions that guarantee closed-loop stability of the system
in normal operation and under abrupt faults in some of
the sensors. The experimental example presented in the
paper confirms the effectiveness of the scheme in those
situations.
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Multisensor switching control strategy with fault tolerance
guarantees. Automatica 2008; 44(1): 88–97.

[8] A. Yetendje, M.M. Seron, and J.A. De Doná. Fault-
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